The Effect of DNN-based Voice Segregation on the Selective Attention

Introduction

Background

- Deep neural networks (DNNs) have a high potential improving voice segregation and speech for intelligibility in multiple-voice environments [1].
- Neural responses can be decoded to segregate the voice of a listener's interest by providing separated access to each speaker via separate presentation [2].

Motivation

This study investigates the effect of a low-latency DNN algorithm for separating two competing voices on selective attention for HA users.

Research question

Can auditory attention decoding (AAD) methods [3] be used to evaluate the effect of a low-latency DNN **speech separation** algorithm in hearing-aid *users*?

Experiment

Participants **15 HI** subjects with an average age of 70 ± 12 .

EEG data Acquisition

64 channels of scalp EEG data (10/20 system) were recorded using the Biosemi ActiveTwo system.

Stimuli

- **Danish** continuous speech material (100 minutes).
- male + 1 female.
- Scaled to same RMS.
- **DNN** procedure:
 - DNN Training: 20 min
 - DNN Validation: 10 min
 - Available for EEG test: 70 min

S

Speaker 1 Speaker 2

AUTHORS: Emina Alickovic^{1,2}, Lars Bramsløw¹, Umaer Hanif¹, Rikke Rossing¹, Gaurav Naithani³, Tuomas Virtanen³, Carina Graversen¹, Dorothea Wendt^{1,4,}, Thomas Lunner^{1,2,4,5}, Niels Henrik Pontoppidan¹

¹Eriksholm Research Centre, Denmark, ²Department of Electrical Engineering, Linkoping University, Sweden, ³Laboratory of Signal Processing, Tampere University of Technology, Tampere, Finland, ⁴Department of Health Technology, Technical University of Denmark, Denmark ⁵Department of Behavioral Sciences and Learning, Linkoping University, Sweden

Experiment design

Test design:

Task design:

• Total = 3 conditions

• 25 replications = 75

recordings per subject

Data analysis method

Results

Conclusion

Data analysis showed that the DNN-based voice segregation had a significant effect on selective attention, demonstrating the potential of the low-latency DNN algorithms.

Information

Emina Alickovic Eriksholm Research Centre eali@eriksholm.com

References [1] Bramsløw, Lars, et al. "Improving competing voices segregation for hearing impaired listeners using a low-latency deep neural network algorithm." The Journal of the Acoustical Society of America 144.1 (2018): 172-185. [2] O'sullivan, James A., et al. "Attentional selection in a cocktail party environment can be decoded from single-trial EEG." Cerebral Cortex 25.7 (2014): 1697-1706. [3] Alickovic, Emina, et al. "A Tutorial on Auditory Attention Identification Methods." Frontiers in Neuroscience 13 (2019): 153. [4] Crosse, Michael J., et al. "The multivariate temporal response function (mTRF) toolbox: a MATLAB toolbox for relating neural signals to continuous stimuli." Frontiers in human neuroscience 10 (2016): 604.

- DNN condition had: • Sig lower masker correlations when compared to the SUM condition (p < 0.0005).
- Non-sig lower masker correlation when compared to the SEPARATE condition.
- DNN better decoded than SUM (p < 0.005)
- But not better than SEPARATE
- The mask may be helpful

Read more at: www.eriksholm.com:

